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ABSTRACT: This work is devoted to the simulation of
the flow of a high viscosity NR/SBR rubber compound
through the die of a single screw extruder with axisymmet-
ric geometry. An in-house developed computer code based
on the use of continuous penalty finite element method
was employed. Three constitutive equations including
two generalized Newtonian models namely; power-law
and Carreau and an explicit viscoelastic model named
CEF (Criminale-Ericksen-Fillbey) were used to reflect the
rheological behavior of the material. Using the parameters
of the rheological models determined by a slit die rheometry
technique, the flow of the compound was simulated
through the die and results were compared with experimen-

tally measured mass flow rates. It is shown that for high vis-
cosity rubber compounds the use of generalized Newtonian
models which do not take the normal stress in simple shear
flow into consideration gives rise to significant errors in pre-
diction of mass flow rates. On the other hand, comparing
the simulations results using the CEF equation with experi-
mental data revealed that this model is the best compromise
between generalized Newtonian and full viscoelastic
models which need high computational costs and effort.
© 2012 Wiley Periodicals, Inc. ] Appl Polym Sci 000: 000-000, 2012
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INTRODUCTION

Extrusion is one of the major processes of the forming
of polymers in which raw materials are plasticated
by either a single screw or a twin screw extruder
machine and then pressurized and pumped through
a die to form into the desired final shape. The quality
of the end product is very dependent on polymer
melt flow variables such as velocity profile, material
orientation, pressure distribution, and temperature
field. These parameters are in turn functions of the
operating conditions (e.g., screw speed and zone tem-
peratures) and also geometry of the flow domain.
Consequently, selecting the proper values for operat-
ing conditions and/or optimization of the screw and
die geometries will result in the improvement of the
product quality, energy saving, and reduction of the
manufacturing costs. To achieve these goals, many
researchers have tried to develop sophisticated math-
ematical models to simulate the flow of polymer
melts through the screw channel and die using vari-
ous numerical techniques such as finite volume
method (FVM), finite difference method (FDM), and
finite element method (FEM). However, among these
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methods FEM has been extensively used due to its
high accuracy and also capability of modeling of
intricate geometries. The finite element solutions of
the flow equations using the pure viscous rheological
models including power-law, Carreau, and the other
generalized Newtonian equations have been widely
studied. See for example (Ghoreishy et al.'” and
Huang et al.*). However, the use of complicated con-
stitutive equations, especially viscoelastic models for
the flow of rubbery materials in conjunction with
finite element method is still a challenging task. For
example, Mitsoulis,> Marin and Rasmussen,® and
Ganvier et al.,” have taken the advantage of implicit
viscoelastic constitutive models. In spite of their high
capability in expressing viscoelasticity, the use of
implicit models in numerical simulation of the poly-
mer flows is not an easy job. This is because that they
add an extra first-order differential equation to the
primary set of equations. The solution of first-order
differential equations by finite element methods is
always associated with the stability and convergence
problems. Alternatively, several studies have been
carried out using explicit viscoelastic constitutive
models. The CEF constitutive equation is one of the
very well-known of these series that have been
employed by researchers. For example, Ashmore
et al.® used this model to study coating flows of non-
Newtonian fluids. Mitsoulis,” took the advantage of
this model to simulate the extrudate swell. Norouzi
et al.'’ used this equation for the simulation of the



flow in a curved duct with squared cross-section.
Bretas et al."' in their work applied this constitutive
model for the study of the extrusion of different poly-
ethylene blends. In another investigation, Lee et al.'?
used the mentioned constitutive model to study the
flow behavior between two concentric rotating
spheres. However, based on our literature review no
one has used it for the simulation of rubber com-
pounds flow through extruder dies.

In the present study, the flow of a rubber com-
pound through a die of a laboratory extruder with
axisymmetric geometry was simulated using an
in-house developed computer code based on
continuous penalty finite element method under
isothermal and steady state conditions. Our prelim-
inary nonisothermal finite element calculations
showed that the temperature difference between
inlet and outlet of the die is trivial. To prove this
we have also experimentally measured the temper-
ature rise along the extruder die. The temperature
of the rubber compound at the entry region was
recorded using a thermocouple inserted just at the
entrance region. The output temperature was also
measured by the use of a manual laser type ther-
mometer. It was found that the temperature rise is
between 1 and 2°C which justified the assumption
of the isothermal condition for the flow under
study. Three different constitutive models, namely,
two completely viscous (power-law and Carreau)
and an explicit viscoelastic equation (CEF) were
considered. The results of the simulations were
analyzed and compared with the experimental
data to check the accuracy of each constitutive
model in predicting the process variables.

In the following sections, we first describe the
mathematical model and then introduce the three
constitutive models used to complete the flow equa-
tions. The finite element formulations associated
with this problem in conjunction with the developed
algorithm for the computer code is briefly described
in the next section. The results of the computer sim-
ulation for the flow of a rubber compound using the
mentioned models through the die of the single
screw extruder are presented in the subsequent sec-
tion. These results are compared with measured out-
put mass flow rates. It is shown that the use of the
CEF viscoelastic equation not only gives rise to more
accurate results than those obtained by the simple
generalized Newtonian models but also complicated
algorithms and high computational costs and effort
normally required for full implicit viscoelastic con-
stitutive equations are avoided.

Mathematical model

The governing equations of the steady-state, isother-
mal, and laminar flow of an incompressible non-
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Newtonian fluid in a two-dimensional cylindrical coor-
dinate system (r, z) (axisymmetric) in the absence of
the body forces are given as follows (Bird et al."”):

The continuity equation
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The momentum equation in r direction
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The momentum equation in z direction
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In these equations, v, and v, are components of
the velocity vector, p is the pressure, p is the mate-
rial density, 1,/, T)2, T.. and Tgp are the components of
the stress tensor 1 which are normally expressed
based on the selected constitutive equations. In this
work three constitutive models were chosen which
are as follows:

Power-law and Carreau models

For the well-known power-law and Carreau equa-
tions which are categorized as the generalized New-
tonian models, the stress tensor is expressed in
terms of rate-of-deformation tensor A as:

1=-nA 4)

The rate-of-deformation tensor for an axisymmet-
ric system is given as:
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In eq. (4), n is the shear dependent viscosity
which is defined as (Bird et al.'*):
Power law model

n—1
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Carreau model
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TABLE I
Specifications of the Raw Materials
Mooney
viscosity
Densitg ML(1+4)
Material Grade (g cm™) (100°C)
Natural rubber (NR) SMR 20 CV 0.91 65
Styrene butadiene 1502 0.93 54

rubber (SBR)

In the above equations, 1y is the consistency of the
fluid, n is the power-law index, A is the relaxation
time, and I, is the second invariant of the rate-of-de-
formation tensor given by:
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Figure 1 a. Flow curves of the rubber with predicted val-
ues by power-law and Carreau models at low shear rates.
b. Flow curves of the rubber with predicted values by
power-law and Carreau models at high shear rates.

Criminale-Ericksen-Fillbey (CEF) model

The most highlighted weakness of the Generalized
Newtonian constitutive models is that they do not
take the partly elastic behavior of polymeric materi-
als into account. Conversely, the use of differential
or integral viscoelastic equations has intrinsic com-
plications in obtaining stable and accurate results.
Therefore, to overcome this problem the elastic
behavior of polymer melt was considered using a
third constitutive equation which was an explicit
viscoelastic model named as CEF model (Bird
et al,'* Nassehi,'® Mitsoulis,'® and Syrjala,l7) for
modeling the flow that do not significantly deviate
from viscometric conditions. In this model the stress
components are modified to include the influence of
the normal stress in non-Newtonian flow behavior
(Nassehi,'®). The components of the stress tensor in
this model for an axisymmetric domain are given as
(Bird et al.'*):

B dvu, dv,  0Ov, 2
T = =27 5 > (Sr + 82) )
v, 0v,
zr = bz = — . T <o 1
T T n ( 5 + 62) (10)
0y
Top = —2117 (11)

2
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In these equations the partly elastic responses of
polymer melt are considered by the first and second
normal stress difference coefficients, namely ¥; and
¥,. Mitsoulis,'® proposed that there is very little
possibility of secondary flows when there is a main
direction for the flow and thus ¥, can be omitted.
Consequently, in this work we have neglected the sec-
ond normal stress coefficient and used the following
expression for W, suggested by Nassehi'” given as:

¥y = An’|y,. [ (13)

where A and b are two material constants which
must be determined by an appropriate rheometry
technique.

TABLE I1
Parameters of the Generalized Newtonian Models
(Power-Law and Carreau, SI Unit)

High shear rate

Low shear rate range range
Constitutive
model n Mo A n Mo A
Power-Law 0.28 168,720 - 0.11 236,333 -
Carreau 0.26 242,000 16 0.1 81,900 0.3
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50.5 mm

Figure 2 Finite element mesh of the slit die.

Boundary conditions

First type boundary conditions were assumed on both
solid walls (no-slip) and symmetry line in which it
was supposed there was no cross flow. The math-
ematical descriptions of these conditions are:

On solid walls v, =0, v, =0 (14)

On symmetry line v, = 0 (15)
Stress free condition (second type boundary condi-
tion) was applied on symmetry line of the domain

given as follows:

n=20 (16)

[l

where 7 is the unit vector normal to the boundary.
Pressure boundary conditions (second type bound-
ary condition) were also imposed at the inlet and
outlet of the domain via the finite element working
equations described later.

Finite element formulations

The traditional Galerkin finite element method was
used to solve the flow equations. The continuous
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Figure 3 Mass flow rate vs. pressure difference (calcu-
lated and experimentally measured) in the slit die used for
rheometry.
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penalty technique was also utilized to handle the
incompressibility imposed by the continuity eq. (1).
The basic step in the penalty formulation is the elim-
ination of the pressure term in momentum egs. (2)
and (3) using a modified form of the continuity
eq. (1) given as:

10 87)2] 17)

p=—h [rar(m’) T

where A* is the penalty parameter. It can be shown
that if we choose A* to be a relatively large number,
the continuity equation will be satisfied. The value
of A* is chosen to be a function of viscosity to ensure
uniform continuity enforcement in non-Newtonian
problems. Therefore it is written as:

A =n (18)

where n is the local viscosity and A is a very large
number. On the basis of our numerical trial and
error in this work it is found that a number of 10"
gives the most accurate results. Using the Galerkin
method, the flow working equations are derived as:

{[KH] [Klzq { {v} } _ { {Fl}} (19)
KH] - [K#] L Ava} {F*}

where [K'!], [K'?], [K?!], and [K?*] are the submatri-
ces of the elemental stiffness matrix; {v,} and {v.}
are the subvectors of the vector of unknowns and
{F'} and {F?} are the subvectors of the load vector,
respectively. The members of these matrices and
vectors are given in the Appendix (Nassehi,'” and
Ghoreishy et al."). Because of the elimination of the
pressure from the primary variables, it is calculated
by a secondary operation. In this method the pres-
sure of each nodal point was calculated from

TABLE III
Parameters of CEF Constitutive Model
Model Pressure range (Pa) A (Pa'™® s7?) b
CEF-1 Low (<1.3 x 107) 45 x 1077 2.25
CEE-2 High (>1.3 x 10) 35 x 1077 2.20
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Figure 4 Laboratory extruder used for the extrusion pro-
cess. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

eq. (A.15), (see Appendix) by averaging the pressure
values at four reduced integration points nearest to
that node. Having assembled the eq. (19) over a fi-
nite element mesh, appropriate boundary conditions
are imposed and a set of algebraic equations is
obtained. The presence of the convective terms in
the momentum as well as the dependency of the
local viscosity on the velocity gradients makes this
set of equations nonlinear. Consequently, an iterative
procedure based on the successive substitution
method (Picard’s iteration method) (Reddy and
Gartling,'”) has been adopted. The global solution
strategy used in this work is based on the method
proposed by Sobhani et al.*’

EXPERIMENTAL
Materials

For the experimental part, a blend of NR and SBR
(40/60) was prepared on a Banbury and then a two-
roll mill. Table I gives the specifications of the raw
materials used in this work. The final compound
was rested for 24 h to release elastic memory held in
the compound before the rheometry experiments
and the extruding operations were carried out.

Rheometry, generalized Newtonian

A slit die rheometry technique was used to study
the rheological behavior of the rubber compound. In
this technique a low profile with high length slit die
was attached to an extruder in conjunction with two

pressure transducers installed on the die. Seven
screw speeds (1, 2, 4, 8, 16, 24, and 32 RPM) were
selected to reproduce the low and high shear rates
ranges. The temperature of the rheometry die was
also set to 103°C which was the average temperature
of the axisymmetric die used for the main extrusion
process. The steady state pressure difference and the
output mass flow rates associated with each screw
speed were measured and recorded. Using the clas-
sical flow equations for a slit flow domain,*' these
data were analyzed by the use of a curve-fitting pro-
gram (Matlab R2007a) and the rheological parame-
ters were determined. Because of the different flow
behaviors observed in the rubber compound at low
and high shear rates, the curve fitting procedure
was carried out for two different shear rate ranges.
Figure 1(ab) illustrate the flow curves of the com-
pound at low and high shear rate regions, respec-
tively, with their corresponding predicted curves by
the power-law and Carreau models. The parameters
of these models are also listed in Table IL

Rheometry, CEF

Determination of the parameters A and b in the eq.
(13) for rubbery materials is not a trivial task. We
have used a numerical trial and error approach to
find them in which the flow of the rubber through
the mentioned slit die was simulated by the use of
the finite element method in conjunction with the
CEF rheological model in (x,y) coordinate system.
Figure 2 shows the finite element mesh used in this
calculation. Having used a simple iterative optimiza-
tion technique, the parameters (A and b) were found
so that the error between calculated and experimen-
tally measured output mass flow rates at the each
pressure difference became minimum as shown in
Figure 3. Similar to generalized Newtonian models,
two sets of data were determined at low and high
pressure ranges (refer to CEF-1 and CEF-2) which
are given in Table IIL It follows that the first normal
stress coefficient V'; is also a function of pressure.

Extrusion process

The extrusion process of the rubber compound was
carried out using a laboratory single screw extruder.
Figure 4 shows the extruder machine with the
assembled die and inserted pressure and temperature
transducers. The die in this extruder was used to

TABLE IV
Experimental Results of the Rubber Extrusion
Screw speed (RPM) 2 4 6 8 10 12
Entrance pressure (Pa) 59 x 10° 8.2 x 10° 9.2 x 10° 10.1 x 10° 10.6 x 10° 11.0 x 10°
Mass flow rate (g s 0.051 0.0845 0.121 0.158 0.199 0.245

Journal of Applied Polymer Science DOI 10.1002/app
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Figure 5 Finite element mesh of the die.

shape the rubber into a rod-type product. Six screw
speeds were selected and similar to the rheometry
experiment, the entrance pressure and the mass flow
rates were measured as recorded in Table IV.

RESULTS AND DISCUSSION

Based on the aforementioned numerical methods
an in-house computer code was developed in
FORTRAN and used for the simulation of the flow
of a rubber compound through the axisymmetric
part of the rod die of the extruder shown in Figure 4.
The domain of the analysis was discretized into 800
nine-noded quadrilateral elements with 3381 nodes.
Figure 5 shows the finite element mesh. Having
tried several mesh configurations, the mesh shown
in Figure 5 was found to be accurate and
convergent.

For each entrance pressure given in Table IV, the
simulation was run using both power-law and
Carreau constitutive models. The output mass flow
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Figure 6 Mass flow rate vs. pressure difference (experi-
mentally measured, predicted by generalized Newtonian
models and CEF models) in main extrusion process.
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rate was calculated from axial component of the
velocity vector using the following equation:

R
M =2n / pro,dr (20)
0

The comparison between the calculated mass flow
rates using eq. (20) and the experimentally measured
data in conjunction with the computed errors are
illustrated in Figures 6 and 7, respectively. The
details of the results obtained by the use of different
finite element meshes corresponding to the screw
speed of 8 RPM are also given in Table V which
confirms the accuracy of the selected mesh shown
in Figure 5. As it can be seen in Figures 6 and 7,
Carreau constitutive equation gives more accurate
results than the power-law model. This is obviously
due to taking the initial Newtonian (constant viscos-
ity) behavior of the compound into consideration.
However, the errors are still high which can be
attributed to the stretching phenomena in polymer

100
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Figure 7 Errors in prediction of the mass flow rates
shown in Figure 6.
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TABLE V
Computed Mass Flow Rates Using Different Rheological Models with Different Mesh Refinement
Power-law Carreau CEF
No. of No. of Flow rate Flow Error Flow rate Error Flow rate Error
elements nodes (experimental) (g s rate (g s (%) (g s (%) (g s (%)
32 165 0.158 0.0801 47 0.1115 26 0.180 18
128 585 0.158 0.0931 38 0.1134 25 0.1725 13
512 2193 0.158 0.1071 29 0.1143 24 0.1743 14
800 3381 0.158 0.1054 30 0.1143 24 0.1704 12
1152 4825 0.158 0.1024 32 0.1142 24 0.1716 13
chains during the flow in extruder die especially in
rubbery state. This phenomenon generates normal
stresses that are not included in the generalized
. . TAUZZ
Newtonian models. In other words, pure viscous 2.49700C+-085
constitutive models do not completely express all % 2 .00640E+005
the phenomena happening in the flow of rubber [g] 31580005
1.02520E+083
compounds. (7]
. . . 5345 .000080
To tackle this problem, the simulation of the flow Le]

i [5] 400 00006000
of the rubber compound through the mentioned [4]~560-88080
axisymmetric die was repeated with the CEF consti- [3] 79972000000
tutive equation. The predicted mass flow rates using P it
the three mentioned models (i.e., power law, Car- W i

reau and CEF) in conjunction with experimentally
measured data are also shown in Figure 6. More-
over, the errors are compared and illustrated in
Figure 7. In addition to the errors of the constitutive
equations, they can be attributed to (1) errors associ-
ated with the discretization of the equations and (2)
the partial slip of the rubber compound on the inter-
nal solid wall of the domain which may affect the
velocity profile and mass flow rate. It can be seen
that the CEF constitutive equation is a more com-
plete rheological model for the flow of the rubber
compound so that it can predict the mass flow rate
with the calculated errors of even less than 10%. The
most logical reason is that CEF equation covers
induction of normal stresses in addition to viscous
behavior. This can be additionally investigated by
the study of the distribution of normal stress in axial
direction (t.;) for a sample screw speed of 8 RPM as
shown in Figure 8(a—c). Similar results were
obtained for the other screw speeds. While both
power-law and Carreau models could predict nor-
mal stresses only in the areas where cross section
changed (Part B of the die in Fig. 5), the CEF model
predicted nonzero normal stress in constant cross
section areas which was due to stretching of the
macromolecules in those zones. It should be noted
that for all rheological models negative values for
the 1., components were obtained at the entrance to
the diverging section of the die (Part B). This is
because, as rubber molecules enter this section their
velocity start decreasing to satisfy the conservation
law. Therefore, the molecules with lower velocity
push back those with higher values. The
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Figure 8 a. Contours of the 1., predicted by power-law
model. b. Contours of the t., predicted by Carreau model.
c. Contours of the t., predicted by CEF model.
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Figure 9 a. Velocity vector in the flow domain predicted
by power-law model. b. Velocity vector in the flow do-
main predicted by Carreau model. c. Velocity vector in the
flow domain predicted by CEF model.

consequence is negative values for the 1, as can be
seen in the entrance region of Part B (Fig. 5). In con-
trast when rubber molecules are leaving this part of
the die the normal stress is positive due to the
increase in velocity which causes the molecules in
higher z implement a positive force on the molecules
of lower z. The stress field has also significant
impact on the velocity profile. Figure 9(a—c) show
the velocity vector field corresponding to screw
speed of 8 RPM using the three rheological models,
respectively. As it is shown, the overall shapes of
the vector fields are similar. However, due to the
difference in profile shape and magnitude of stresses
(mainly the normal stress), the magnitudes of veloc-
ity vectors in each of three areas (A, B, and C shown
in Fig. 5) differ for each constitutive model. For this
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Figure 10 Axial velocity (v.) profile at zone A (see Fig. 5)
of the die.
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Figure 11 Axial velocity (v.) profile at zone C (see Fig. 5)
of the die.

reason, the integral of the velocity profiles in eq. (19)
results in prediction of more accurate of mass flow
rates using CEF model. To have a closer look at the
effect of the normal stress on the velocity field,
the axial velocity profiles in Parts A and C of the die
corresponding to screw speed 8 RPM are shown in
Figures 10 and 11, respectively. These parts (A and
C) have constant cross sections. We can see that due
to the existence of the normal stress in CEF model
more tension is applied on the flow so that the
velocity profile becomes more stretched. In addition,
since this tension is parallel to the axial direction it
results in larger velocity vectors in that direction.
The maximum tension is on the wall which
decreases when approaching towards the symmetry
line. Therefore, for CEF model the magnitude of
axial component of velocity vector near the wall and
also its rate of increase is greater than corresponding
values predicted by the generalized Newtonian
models. This means that the CEF model can predict
larger values for the velocity vectors in comparison
to power-law and Carreau. This resulted in predic-
tion of larger amounts of mass flow rates which are
closer to experimental values.

CONCLUSION

The powerful capabilities of the continuous penalty
technique were combined with an explicit visco-
elastic constitutive model named CEF equation. A
computer program was developed which was used
for the simulation of the flow of a high viscosity
rubber compound through the die of a single screw
extruder with axisymmetric geometry. Two well-
known generalized Newtonian models namely:
power-law and Carreau equations were also used
in the mathematical model. Comparison of the pre-
dicted mass flow rates with their associated experi-
mental data revealed that the CEF equation is a very
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attractive alternative to both generalized Newtonian
and differential and/or integral viscoelastic equa-
tions while keeping the computational cost and
efforts as low as possible.

APPENDIX

The members of the sub-matrices and sub-vectors in
eg. (19) are given as follows:

For generalized Newtonian (power-law and
Carreau) models:

o, 190)
Kiljl/p(pl( a]+vz 6z)dQ

e

2 09, 99; 09, 09,
+/Qe n(rz(Pi(pf+2 or W+ 0z 0z a0

@i | 0o i 99
(e
Q.
0¢; 00; 100; o, 09;
12 iZY] s i~ '
Ky /”a ar /x(@’r 9z o &)dg
(A2)
K2 = ‘9‘;’1 Sldo+ / xa‘“((‘)’ )dQ (A3)
d9; 09
Kizjzz/p(Pi(vya—i_vZa])dQ
8(p78(P] 8@13@]
+/(1”I or Or M= 0z 0z 40
/ x&p, (P’ dQ (A4)
dv dv,  Ov,\ ]
1 _ A — Zr 220"
F; = ?{(pl( p+2n 6r>n’+n<8r + Bz>nz_d1“
I,
(A.5)
[ /0 dv, 0 |
- f o] (;;+;) ( p+om a) ar
I -
(A.6)
For the CEF:
_09; 09
I(ilj1 :/pq)«(v 8—]4— a])dQ
a(Pz'a(pj do; 99;
/ ( ®9 25 5 oz 2 )1
Q,
(A7)

0, 00\ (9 99
+/}\<r+8r><r+8r dQ
Q.

¢, 09; 109,  0; 09
12 i ] ] i ]
Kj _/”a ar +/x(“° 2 T or az>dQ
Q. Q.
(A.8)
0¢; 00; dv, v, 0@, 00
21 _ eyl z r i %
Kj _/” or 0z dQJF/%(a +8z) oz 92
Q, Q.
o0; (0 99
+/”az<r+ar 0 (A.9)
0; oP;
22 A5y 5 21
Kl] = / p(p,(vr Ep + 0, 8z>dQ
0¢; 00; do; 99;
2
+/<“a o T8 Bz
Q.
Ov: | Ovr\ 99,99
+\P1(8r * 82) 0z Or a0
/ xa‘pl (PJ dQ (A.10)

ov ov, Ov
1 ) - r z r
F: = y{(p,K p+2nar>n,+n<ar +az>nz}d1"

e

(%Z 81),
I

+-p+ d0: 8UZ+% ’ n
PNy, or = 0z z

where @; and ¢; are the weight and interpolation
functions used to approximate the primary variables
over a typical element domain Q, by the following
expressions:

(A.11)

dar

(A.12)

S
1%

M= M=

(vr>j(\0j (A-13)

(A.14)

N
1%

(v:);0)

‘T,
[

The pressure at the reduced integration points are
also calculated by substituting of the egs. (A.13) and
(A.14) into eq. (17) as:

N

DY)

j=1

* 67’ al
=
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